
Layered Paxos:
A Hierarchical Approach to Consensus

Andrew Nagawiecki
Department of Computer Science

Rensselaer Polytechnic Institute
Troy, United States

andrew.nagawiecki@gmail.com

Stacy Patterson
Department of Computer Science

Rensselaer Polytechnic Institute
Troy, United States

sep@cs.rpi.edu

Abstract—We present a new consensus algorithm for use in
distributed systems. The algorithm, Layered Paxos, is designed
for hierarchical systems where processes can be grouped into
disjoint components. The underlying communication network is
assumed to be two-fold with quick communication between pro-
cesses in the same component and high-latency communication
between processes in different components. Layered Paxos uses
the Paxos algorithm as a building block with the addition of
a few mechanisms to achieve hierarchical consensus and aims
to increase the overall consensus throughput of a system that
follows this two-fold communication paradigm. We present a
theoretical proof that Layered Paxos satisfies the basic safety
and liveness properties of Paxos in addition to some related to
the hierarchical nature of the system. Finally, we present the
experimental results of the comparison between Layered Paxos
and Paxos in a hierarchical system, in which Layered Paxos was
able to achieve up to 5x the throughput of Paxos.

I. INTRODUCTION

With the rise in data creation and cloud computing, it
is no surprise that reliable replication of large sets of data
has become a growing problem for which to provide more
robust solutions. For years, distributed systems have made
use of consensus algorithms to achieve this replication where
data needs to be constantly available despite replica crashes.
As modern-day systems grow larger and scale globally, the
machines running these consensus algorithms are often split
into clusters spread out over various geographical locations.
This is seen when looking at systems consisting of data centers
of many machines with multiple data centers across the world.
The underlying communication network of these systems is
usually two-fold. The first is a fast, local communication
among servers in the same cluster. The second is a high-latency
communication between servers in different clusters due to the
spatial distance between them.

One of the main consensus algorithms used in these systems
to achieve replication is Paxos [1][2]. However, Paxos requires
multiple rounds of messaging between a majority of servers
in the system in order to reach consensus on a single value. In
the globally scaled systems described above, these messaging
rounds become costly due to the high latency communication
between data centers. As globally scaled systems provide
service to a large number of clients, it is not desirable for
a client’s request to be processed slowly.

In this paper, we propose Layered Paxos, which is tailored
towards these types of distributed systems. Within each data
center or cluster of servers, a local instance of Paxos is run to
queue up client requests. One server from each cluster elected
as a delegate then participates in a global instance of Paxos.
These delegates propose and reach consensus, using Paxos, on
batched sequences of client requests which are then replicated
in the global system. This hierarchical pattern makes use of
the fast network between servers in the same cluster to quickly
queue up a large sequence of client requests while reducing
the high latency effect of the global network to increase the
overall throughput of the system.

Layered Paxos guarantees a totally ordered global log across
all processes. The ordering of values queued within each
component is maintained in the global log; however, there is
no ordering imposed on values queued in different clusters.
Layered Paxos will make progress given that a quorum of
clusters are active and able to queue up values within their
cluster. In addition, a quorum of delegates must be stable long
enough with enough messages eventually delivered between
them.

Finally, we present an experimental evaluation of Layered
Paxos. The throughput of Paxos and Layered Paxos are
compared in a hierarchical system with a varying number
of components. We also define two types of request latency
depending on the type of application the target system is
running. These two types of request latency are compared
between Paxos and Layered Paxos to discuss what must be
taken into consideration when using Layered Paxos in any
system. We end by analyzing the effects of delegate crashes
on the execution of Layered Paxos.

Some attempts have already been made to improve Paxos
in these network situations. In D-Paxos [3], processes are
grouped into components. Processes within each component
run Paxos to queue up a batch of client requests. One process
from each component is elected to be the delegate of the
component who proposes a batch of client requests to the
other delegates. Our proposed solution takes inspiration from
D-Paxos; however, it requires less from the system model than
D-Paxos requires such as Partial Synchrony [4] and a failure
detector of eventually perfect class [5].

In C-Raft [6], a similar structure to D-Paxos is used;



however, the underlying algorithm used for replication is
Raft [7]. Raft is a replication algorithm similar to Paxos and
was designed for the purpose of understandability. As such,
there are a few extra overhead mechanisms required by Raft
that are not required by Paxos. Our proposed solution aims
to follow the same structure of C-Raft but use Paxos as the
underlying replication algorithm. This reduces the number of
overhead mechanisms required and simplifies our proposed
solution.

In Institutionalized Paxos [8], processes are grouped into
clusters similar to D-Paxos. However, the main contribution
in this work is the protocol for membership changes between
these clusters. Each cluster has its own state machine that is
replicated through Paxos, but the same state is not replicated
across the whole system of clusters. Our proposed solution
allows for multiple groupings of processes to replicate the
same state across the whole system, regardless of which
grouping a process belongs to.

The rest of this paper consists of the following. Section II
states the system model as well as the safety and liveness
properties of Layered Paxos. In Section III, we describe more
properly the specifications of the Layered Paxos algorithm. In
Section IV, we analyze the algorithm specification in order to
prove that it satisfies the safety and liveness properties. Section
V discusses experimental results of Layered Paxos compared
to Paxos. Finally, we conclude the paper in Section VI.

II. SYSTEM MODEL

A. Definitions

Our system consists of n processes that are grouped into
m disjoint components. We define a component as a set
of processes that does not intersect with any other defined
component. Within each component, a single process is elected
by a quorum within the component to serve as a delegate,
which serves a special role in consensus. In Section III, we
define the election procedure that components must use to elect
their respective delegate. Fig. 1 depicts three components each
with three processes with the orange representing the process
chosen to serve as a delegate. Messaging within the system
is asynchronous, and messages may be lost or duplicated but
never corrupted. We assume that each process has a unique
ID, and a process may send a message to any other process
if it has knowledge of the said process ID. Processes may
crash and recover with information they have stored in stable
storage. A process is said to be active if it is not currently
crashed. A component is active if and only if a quorum of
its processes are currently active and there exists an active
delegate process.

Since our proposed solution is a layered algorithm, we find
it useful to define two distinct layers used in the algorithm.
The local layer involves running Paxos between all processes
within a single component. Thus, there is a single local layer
of Paxos run for each component in the system. The goal of
the local layer is to quickly queue up client requests received
by any process in said component. Below are definitions used
when discussing the local layer of consensus.

• Local Paxos Instance: The behavior of Paxos that is run
between processes within the same component in order
to decide upon a Local Log of values.

• Local Log: The log replicated among all processes
within the same component. Processes from different
components may have differing Local Logs.

• Local Acceptor: A process acting as an acceptor in the
Local Paxos Instance.

• Local Proposal: A proposal that is made in the Local
Paxos Instance.

Above the local consensus layers lies a global layer, which
involves running a slightly modified version of Paxos between
the elected delegates from each component. In this layer, each
delegate proposes batched client requests of size k that have
been queued up in its respective component’s local layer. Once
a client request has been chosen at both the local and global
layer, it is considered to be chosen by the whole system.
Below are definitions used when discussing the global layer
of consensus.

• Delegate: A single process from a component recognized
by a quorum of processes in the component to serve in
the Global Paxos Instance.

• Global Paxos Instance: The behavior of Paxos that is
run between the each component’s delegate in order to
decide upon a Global Log of values.

• Global Log: The log replicated among all processes in
the system (regardless of component membership). A
“slot” in the Global Log stores a contiguous sequence
of values from any component’s Local Log proposed at
the Global Paxos Instance. The Global Log maintains the
true state of the system.

• Global Acceptor: A process acting as an acceptor in the
Global Paxos Instance.

• Global Proposal: A proposal that is made in the Global
Paxos Instance.

In Fig 2. we show a high-level depiction of the general flow
of Layered Paxos.

B. Safety Properties

The underlying goal in our consensus problem is to replicate
a totally-ordered Global Log at each site. In order to achieve
this Global Log, we make use of a Local Log within each
component. The Local Log is comprised of Local Proposals
made from each site. To ensure a totally-ordered Global Log,

Fig. 1: Example of three components each with three pro-
cesses.



Fig. 2: High level flow of Layered Paxos.

our proposed solution satisfies the following safety properties,
which will be proven in Section IV.

• LS1: Only a value proposed in the Local Paxos Instance
may be chosen within the same component it was pro-
posed.

• LS2: Only a single value is chosen for any slot in the
Local Log.

• LS3: A process never commits any value to a Local Log
slot unless it has actually been chosen for that slot in the
Local Log.

• GS1: Only a value proposed in the Global Paxos Instance
may be chosen within the Global Paxos Instance.

• GS2: Only a single sequence of values is chosen for any
slot in the Global Log.

• GS3: A process never commits any sequence of values
to a Global Log slot unless it has actually been chosen
for that slot in the Global Log.

• GS4: Only a contiguous sequence of values chosen in a
Local Log in any Local Paxos Instance may be chosen
in the Global Paxos Instance.

• GS5: A value chosen in a component’s Local Log may
not be chosen more than once in the Global Log.

C. Liveness Properties

From the FLP theorem [9], we know that it is impossible for
processes to reliably reach consensus in an asynchronous sys-
tem with potential crash failures without requiring additional
liveness conditions. We find it useful to define Local Progress
as components being able to reach consensus on values in
their respective Local Logs and Global Progress as delegates
being able to reach consensus on values in the Global Log. In
order to satisfy the safety properties defined above, Layered
Paxos requires the following liveness conditions in order to
successfully make progress.

• LL1: Local Progress will be made in a component given
that a quorum of its processes are active and enough
messages within the component are eventually delivered.

• GL1: Global Progress will be made given that a quorum
of components are active and enough messages between
delegates are eventually delivered.

• GL2: Global Progress will be made given that a quorum
of delegates are stable for long enough.

• GL3: Global Progress will be made given that a quorum
of components are able to make Local Progress for long
enough.

III. ALGORITHM DESCRIPTION

A. General Algorithm Procedure

Initially, each delegate is pre-decided, and that information
is shared with all processes in the system. Local Paxos In-
stances begin execution allowing processes in each component
to fill up a Local Log of values proposed and accepted by
processes in the same component. The behavior of the Local
Paxos Instance consists of processes in the same component
executing a single instance of the Synod algorithm per Local
Log slot. At any point, a delegate may make a Global Proposal
containing a contiguous sequence of values from its compo-
nent’s Local Log starting one slot above the last Local Log slot
from the delegate’s component committed in the Global Log.
The Global Paxos Instance behavior consists of the delegates
executing a modified instance of the Synod algorithm for
each Global Log slot. The modifications of which are further
described below. Throughout execution of the Global Paxos
Instance, the following rules must be followed:

• A delegate must propose its desired sequence of values
for the first empty slot in the Global Log.

• If a process receives any Global Paxos message but is
not the component’s current delegate, it should respond
to the sender with its knowledge of the current delegate
of its component.

• If the proposer delegate receives a message back that it
contacted the incorrect process in another component,
it should update its knowledge of the delegate to the
response and try sending the global message again to the
updated delegate process.

Phase 1 of the Global Paxos Instance behaves the same as
that of Synod with the following modifications, which can be
seen in Fig. 3:

• Upon receiving a GlobalPrepare message from another
delegate, the delegate should “forward” this message to
all processes in its component, given that the delegate
has not already responded to a higher numbered proposal
number.

• Any non-delegate process, upon receiving a forward
GlobalPrepare message from its component’s delegate,
should record the proposal number into stable storage
and send a positive response back to the delegate who
sent the message.

• Once the delegate has received a positive response from
a quorum of processes in its component, the delegate
may respond to the global proposer with a GlobalPromise
message.

• If the proposer delegate does not receive a response from
a majority of other delegates, it should retry its proposal.

Phase 2 of the Global Paxos Instance behaves the same as
that of Synod with the following modifications, which can be
seen in Fig. 3:

• Upon receiving a GlobalAccept message from another
delegate, the delegate should “forward” this message to
all processes in its component.



Fig. 3: The general flow of delegate forwarded messages.

• Any non-delegate process, upon receiving a forwarded
GlobalAccept from its component’s delegate, should
record the message contents in stable storage and send
a positive response back to its delegate.

• Once the delegate has received a positive response from a
majority of processes in its component, the delegate may
respond to the global proposer with a GlobalAccepted
message.

• Once the proposer delegate has received a GlobalAc-
cepted message from a majority of all delegates, the value
is chosen and it sends a GlobalLearn to all delegates.

When a process receives a GlobalLearn message, it sends
a ForwardLearn message to every process in its respective
component. When a process receives a ForwardLearn message,
it commits the accepted sequence to its Global Log. At this
point, the sequence of Local Log values committed to the
Global Log become a part of the true state of the system.

B. Dealing with Crashes

The above procedure assumes that each delegate is active
indefinitely. However, when a delegate process does crash,
progress will be partially halted if a new one is not elected
for the component, as the component will be no longer
active. Thus, when enough delegate processes crash, the whole
algorithm will be completely halted and cease to make any
Global Progress due to liveness condition GL1. To deal with
delegate crashes, we adopt the leader election algorithm used
by Raft with a few modifications.

The leader election adopted from Raft here is actually a
simplified version of the original. The election process still
consists of three roles: leaders, analogous to delegates, candi-
dates, and followers. All processes keep track of the highest
term they have seen thus far. Each increment of the term
counter corresponds to a single election execution. Thus, the
term counter kept on each processes corresponds to the most
recent election they have knowledge of or have participated
in thus far. Candidates increment their term counter, vote for
themselves, and send a RequestVote message to all processes
within their component with their current term counter. If a
receiving process has a term counter less what was received
and has not yet voted in that term, it replies positively to the
candidate. Upon receiving an acknowledgment from a quorum
of processes in the component, the candidate escalates itself
to the delegate and begins sending heartbeat messages to all
processes in its component. At this point the process can act
immediately in the Global Paxos Instance.

If a process fails to receive a heartbeat message within
its election timeout, the process should transition to the

candidate role and launch the delegate re-election protocol as
described above. As proposed in Raft, the election timeout
should be randomly generated at each process whenever a
timeout is reached. This timeout value should be greater than
the expected round-trip latency of messages within the same
component and less than the expected time between process
crashes.

C. Algorithm Pseudocode

To fully specify the Layered Paxos algorithm in a coded
fashion, we provide the following pseudocode describing the
new message protocols for Layered Paxos. In Fig 4. we show
the state that all processes must store in addition to rules
differing types of processes must follow in an execution of
Layered Paxos. In Fig 5. we describe the set of message
protocols required when electing a new delegate after a crash
and those required for updating knowledge of the new delegate
across the whole system. In Fig. 6 we set forth the Global
Proposal protocol executed by a delegate in order to have a
sequence of Local Log values committed to the Global Log.
Finally, in Fig. 7 we state how processes are to respond to
Global Paxos messages upon their receipt.

IV. ALGORITHM ANALYSIS

In this section, we will prove the following theorems.
Theorem 4.1: Layered Paxos satisfies LS1, LS2, and LS3.
Theorem 4.2: Layered Paxos satisfies GS1, GS2, GS3, GS4,

and GS5.

Fig. 4: State all processes must store in addition to rules the
differing types of processes must follow in an execution of
Layered Paxos.



Fig. 5: Message protocols that are required in order to elect a
new delegate and update knowledge of the new delegate across
the system.

Fig. 6: Global Proposal protocol executed by a delegate in
order to have a sequence of Local Log values committed to
the Global Log.

The general outline for our proof will be as follows. We
first find it helpful to define multiple invariants to use in our
proof. We then prove that Layered Paxos holds these invariants
throughout its execution. Finally, we show that these invariants
prove Theorem 4.1 and Theorem 4.2.

We define the following invariants regarding the Local
Paxos Instance.

• LI1: A local acceptor can accept a local proposal num-
bered n iff it has not responded to a local prepare request
having a number greater than n.

• LI2: For a set S of a majority of local acceptors, either
no value has been accepted by any local proposal less
than n, or the value v has been chosen and is the only
thing that can be proposed at the Local Paxos Instance.

We also define the following invariants regarding the Global

Fig. 7: Message protocols sent and received by delegates at the
Global Paxos Instance to reach consensus on a set of values.

Paxos Instance.
• GI1: A global acceptor can accept a global proposal

numbered n iff it has not responded to a global prepare
request having a number greater than n.

• GI2: For a set S of a majority of global acceptors, either
no value has been accepted by any global proposal less
than n, or the value v has been globally chosen and is
the only thing that can be proposed at the Global Paxos
Instance.

• GI3: There is at most one process in each component who
is recognized as a delegate by a majority of processes in
its component.



• GI4: The current delegate for a component must receive
acknowledgement from a majority of processes in its
component whenever acting as a Global Acceptor.

• GI5: A process can only make a Global Proposal if it is a
contiguous sequence of values chosen in its component’s
Local Log.

• GI6: A Global Proposal can only contain a sequence of
values if no value from that sequence has already been
chosen for a slot in the Global Log.

With our invariants defined, the next step is to prove that
they all hold within an execution of Layered Paxos.

Lemma 4.3: LI1 and LI2 hold in Layered Paxos.
Proof: As these invariants only refer to the Local Paxos

Instance, we only need to look there for the proof. The Local
Paxos Instance is consecutive Synod instances run between a
subset of all the processes in the system following a quorum
based on the number of processes participating in the Local
Paxos Instance. As there are no modifications to Synod in this
case, we know these two invariants hold from analysis done
in the Paxos paper. Thus, Lemma 4.3 holds.

Lemma 4.4: GI1 and GI2 hold in Layered Paxos.
Proof: As these invariants only refer to the Global Paxos

Instance, we only need to look there for the proof. The
Global Paxos Instance is slightly modified consecutive Synod
instances run between all delegates in the system. Since there
are no relaxed modifications of Synod in this case with respect
to how values are proposed or accepted, we know these two
invariants hold from analysis done in the Paxos paper. Thus,
Lemma 4.4 holds.

Lemma 4.5: GI3 holds in Layered Paxos.
Proof: Delegates are elected through a Raft-like leader

election. As proven in Raft, this leader election results in
either no or one process becoming a leader recognized by a
majority of processes in the component. There are two cases
to consider – the previous delegate has crashed or the previous
delegate has not crashed. If the previous delegate has crashed,
then after the election, there will be either no or one process
who won the election, both of which are allowed by GI3.
If the previous delegate has not crashed, after the election,
there may be two processes who believe themselves to be the
delegate. However, only the newly elected delegate will be
recognized by a majority of processes in the component due to
the previous delegate’s lower term number. If the new delegate
is not recognized by a majority of the component, then it
could not have been elected delegate in the first place. Thus,
in either case, we will have at most one process recognized
as the delegate by a majority of processes in the component
and Lemma 4.5 holds.

Lemma 4.6: GI4 holds in Layered Paxos.
Proof: When a delegate acts as a Global Acceptor –

receives either a Global Prepare or Global Accept message
– it must first forward this message to all processes in its
component. The delegate may not respond to this message
until it hears a positive response from a majority of processes
in it component. If the delegate does not receive a majority of
responses, it may not respond to the Global Paxos message it

received. Thus, it cannot act as a Global Acceptor from the
point of view of the Global Paxos Instance and Lemma 4.6
holds.

Lemma 4.7: GI5 holds in Layered Paxos.
Proof: Delegate processes may only make a Global

Proposal if the value proposed is a contiguous sequence of
values from the Local Log. As delegate processes are the only
ones who are able to make Global Proposals, the only Global
Proposals made will be a contiguous sequence of values from
a Local Log. Thus, Lemma 4.7 holds.

Lemma 4.8: GI6 holds in Layered Paxos.
Proof: When making a Global Proposal, the sequence of

Local Log slots proposed must start with the first slot – to
the delegate’s knowledge – that has not been committed in
the Global Log. It is also required that a delegate proposes
for the first, uncommitted Global Log slot it has knowledge
of. When making a Global Proposal for Global Log slot i,
a delegate can fall into one of two cases – slot i has had
no sequence committed or the delegate did not learn that
slot i is already committed. In the first case, slot i is the
true first, uncommitted slot in the Global Log, which means
the delegate has knowledge of every value committed in the
Global Log before slot i, otherwise the delegate would be
forced to propose for some Global Log slot j < i. Since
the delegate has knowledge of all committed values in the
Global Log, the start of the sequence proposed cannot have
been committed in the Global Log. If it was, the delegate
would have knowledge of it and would not propose it in the
sequence. In the second case, it is possible that the delegate’s
proposed sequence contains a value already committed in the
Global Log. However, a sequence has already been committed
to Global Log slot i, so the delegate’s sequence will not be
chosen nor committed to Global Log slot i. In both cases that
a delegate can propose in, no sequence containing a value
already committed in the Global Log will be committed again.
Thus, Lemma 4.8 holds.

Now that it has been proven that all the invariants hold in
Layered Paxos, all that is left is to show that these invariants
satisfy our safety properties. We first show that Lemma 4.3
proves Theorem 4.1.

Proof: Lemma 4.3 proves that Layered Paxos maintains
LI1 and LI2. In the Paxos paper, it is proven that two similar
invariants satisfy the same three safety properties in Paxos.
Thus, without loss of generality, it follows that an algorithm
maintaining LI1 and LI2 satisfies LS1, LS2, and LS3. Since
Lemma 4.3 shows that Layered Paxos maintains LI1 and
LI2 and these two invariants satisfy LS1, LS2, and LS3,
Theorem 4.1 is proven.

Finally, we show that Lemmas 4.4, 4.5, 4.6, 4.7, and 4.8
prove Theorem 4.2.

Proof: First, we show that GI1, GI2, GI3, and GI4 satisfy
GS1, GS2, and GS3. Similarly to how Theorem 4.1 was
proven, if GI1 and GI2 are maintained, then GS1, GS2, and
GS3 will be satisfied as long as the Global Paxos Instance
effectively behaves the same way Paxos does. Within the
Global Paxos Instance, no modifications have been relaxed in



terms of proposing values to be committed. The other scenario
to assert is that no relaxations have been made in terms of
accepting values. From GI3 and GI4, there is at most one
process recognized as a delegate by a majority of processes
in a component and a delegate must receive acknowledgment
from a majority of processes in its component when acting
as a Global Acceptor. Thus, it follows that no more than one
process from a component can act as a Global Acceptor at any
given time. Since no requirements on proposing or accepting
have been relaxed and the number of Global Acceptors re-
mains constant at any given time, GI1, GI2, GI3, and GI4
satisfy GS1, GS2, and GS3.

Next, we show that GI5 and GI6 satisfy GS4 and GS5
respectively. From GI5, the only value that can be proposed
at the Global Paxos Instance is a contiguous sequence of
values from a component’s Local Log. If this is all that can be
proposed, it trivially follows that this is all that can be chosen
for a Global Log slot as only proposed values can be chosen.
From GI6, a Global Proposal can only contain values such
that no value has already been committed to the Global Log.
Again, it trivially follows that no value can be committed twice
in the Global Log if it is never proposed twice in a scenario
where it may be chosen. Thus, GI5 and GI6 satisfy GS4 and
GS5 respectively.

Since we have shown that GI1, GI2, GI3, GI4, GI5, and
GI6 satisfy GS1, GS2, GS3, GS4, and GS5, it follows that
Lemmas 4.4, 4.5, 4.6, 4.7, and 4.8 prove Theorem 4.2.

We have now proven Theorems 4.1 and 4.2 through Lemmas
4.3, 4.4, 4.5, 4.6, 4.7, and 4.8. Thus, our analysis of the cor-
rectness of Layered Paxos in satisfying our safety properties
is complete.

V. EXPERIMENTS

A. Experimental Setup

To test the performance of Layered Paxos in a hierarchi-
cal system against Paxos, we performed experiments in the
Amazon Web Services (AWS) environment. In our setup,
we allocate each component of processes within different
regions including the United States, Canada, and Europe to
simulate a high-latency, wide area network. In particular, the
six regions used were us-east-1, us-east-2, us-west-1, us-west-
2, ca-central-1, and eu-central-2. Each process used a t2.micro
EC-2 instance within its component’s AWS region running on
the Ubuntu 20.04 LTS operating system. Since the latency
between servers in the same AWS region is roughly 1 to 5
milliseconds and that between AWS regions is somewhere
between 200 to 300 milliseconds, we feel this is an accurate
representation of the target systems for Layered Paxos.

For our implementation, we developed both Paxos and
Layered Paxos applications in Python 3.8.3. All messages
passed between processes utilized UDP protocol to simulate
the unreliable messaging described in the System Model. We
set the heartbeat timeout for our leader election mechanism to
a randomly-generated time between 300 and 500 milliseconds
as described in the Raft algorithm. To simulate client requests,
a single process from each component was designated as a

proposer. This process continuously proposed a new value to
its component when its previous proposal had been chosen
or rejected. Both Local and Global proposers were allowed
to retry a proposal at most three times before resetting the
proposal process, potentially updating the log slot proposed for
with knowledge gained during the previous proposal process.

Two main metrics of performance were measured to judge
the performance between Paxos and Layered Paxos – through-
put and request latency. We define throughput as the number
of client requests committed to the true state of the system
every second – the Global Log in Layered Paxos and the
single, replicated log in Paxos. In Paxos, we define request
latency as the time a client request takes to be committed to
the log. Since Layered Paxos has two distinct log layers, we
find it useful to define two types of request latency. Front-
end request latency is defined as the time a client request
takes to be committed in the Local Log with back-end request
latency as the time a client request takes to be committed to
the Global Log. In order to measure throughput and all types
of request latency, three events are logged – when a client
request is proposed at the Local Paxos Instance, committed to
the Local Log, and committed to the Global Log. In addition to
comparing these metrics between Paxos and Layered Paxos,
we test how these metrics are affected when a delegate is
crashed and the component is forced to elect a new one.

B. Throughput Results

We ran the implementation described above for both Paxos
and Layered Paxos to see how the throughput of each varies as
a constant number of processes is split evenly among a varied
number of components. In our tests, we took 12 processes
and split them evenly across 2, 4, and 6 components. Each
test was run for 100 seconds before results were compiled
and averaged. Since each component had a single proposer

Fig. 8: Average throughput for Paxos versus Layered Paxos
with each component in a different AWS region. 12 processes
are split evenly between 2, 4, and 6 components for a total of
6, 3, and 2 processes in each component respectively.



designated, the number of proposers in the system increased
as the number of components increased.

The results of our throughput test are depicted in Fig. 8. To
avoid many concurrent proposals between components in Lay-
ered Paxos, delegate processes would sleep for a randomly-
generated time between 50 and 150 ms before proposing a
batch size of at least 15 entries. As seen below, Layered Paxos
outperforms Paxos in all three component configurations.
The increase in throughput ranges from roughly 2x with 2
components, to 3x with 4 components, to almost 5x with
6 components. In all scenarios, Layered Paxos was able to
make use of the fast intra-component communication while
mitigating the effects of the high-latency inter-component
communication.

C. Request Latency Results

In order to compare the request latency defined for Paxos
and the two types defined for Layered Paxos, we ran tests
identical in setup to those described above to measure the
throughput of each. Some systems exist such that a client’s
request may not be serviced for reason’s other than network
connectivity or system failure. In other words, a client’s
request may not be able to be serviced due to some other
request that has already been serviced such as in an airline
reservation system. In the case of Layered Paxos, if there are
two such mutually exclusive client requests chosen in different
Local Logs, the request that is committed first to the Global
Log is the one that is serviced – the other will be rejected
by the system’s application layer. Thus, it is not until a client
request is committed to the Global Log that a confirmation
could be sent back to the client. In these types of systems,
back-end request latency would be the metric of choice.

The results of the tests comparing back-end request latency
between Layered Paxos and Paxos are depicted in Fig. 9a.

As seen in the figure, the drawback of a higher throughput
in every configuration seen in Layered Paxos over Paxos is
a correspondingly larger back-end request latency. However,
this trend makes sense. In Paxos, client requests are serviced as
soon as the their proposal is committed in the single replicated
log. On the other hand for back-end request latency in Layered
Paxos, once a client request is committed to the Local Log,
it must then wait for at most 14 other client requests to
be committed before the batch is proposed and chosen at
the Global Paxos Instance. Thus, it follows that the average
back-end request latency in Layered Paxos would be multiple
times that of Paxos plus the time of a single Global Paxos
Instance. When the number of components is scaled up, there
is a possibility for more concurrent Global Proposals at once,
which would again increase the back-end request latency in
Layered Paxos.

In comparison to the back-end based systems described
above, other systems exist such that there is no case where two
client requests will be mutually exclusive. In systems where
this is the case, the metric of consideration would be front-
end request latency. As soon as a client request is committed
to a component’s Local Log, given that liveness conditions
hold for long enough, the client’s request will eventually be
committed to the Global Log and become a part of the system
state. As such, a client could be sent a confirmation of their
request being accepted upon it being chosen by the Local
Paxos Instance it was sent to.

The results of the tests comparing front-end request latency
between Layered Paxos and Paxos are shown in Fig. 9b. As
seen in the figure, the average front-end request latency is
much less for Layered Paxos than Paxos. Again, this follows as
each component in Layered Paxos shares a fast communication
network, so consensus in the Local Layer is always fast. In
Paxos, consensus must take place across multiple components

(a) Average back-end request latency (b) Average front-end request latency

Fig. 9: Request Latency compared between Paxos and Layered Paxos with each component in a different AWS region. 12
processes are split evenly between 2, 4, and 6 components for a total of 6, 3, and 2 processes in each component respectively.



which have a slower network, so reaching consensus on a
client request of course takes longer the more components
there are. In contrast to back-end request latency in Layered
Paxos, front-end request latency is not affected by the number
of components, but instead affected by the number of sites
within each component. This is attributed to the fact that
more sites need to be contacted within a component to reach
consensus as more are added to said component.

With the results from above, multiple things needs to be
considered when choosing the number of sites and components
running Layered Paxos. If the target system is one that falls
under the back-end request latency criteria, a balance between
throughput and client response time will need to be taken
into account when determining the number of components.
If the target system falls under the front-end request latency
criteria, the number of components may be scaled to increase
throughput without affecting client response time.

D. Delegate Crash Results

In order to test the effect of delegate crashes on Layered
Paxos, we ran a test involving 2 components with 6 processes
each for 80 seconds. We allowed all processes to run for
roughly 47 seconds before crashing the delegate of one of
the components. In Fig. 10a, we plot the throughput of the
system versus the experiment time. The delegate is crashed at
47 seconds where the red dashed line is seen on the graph.
Following the delegate crash, the throughput of the system
drops to zero for roughly 3.5 seconds before a new delegate
is elected and the throughput spikes. After the spike, the
throughput settles to the steady state it had been before the
crash. In Fig. 10b, the back-end request latency is plotted
versus the experiment time. Complementary to what is seen
in Fig. 10a, Fig. 10b shows a large spike in request latency
when the delegate crashes and the throughput drops to 0.

After a new delegate is elected roughly 3.5 seconds later, the
request latency drops back down to the steady state value it
had been previously. Thus, by implementing a Raft-like leader
election, Layered Paxos can withstand delegate failure and
recover without affecting the system too much granted that
delegate crashes do not happen very often.

VI. CONCLUSION

In this paper, we presented Layered Paxos, which aims to in-
crease the throughput of consensus in globally scaled systems.
Layered Paxos is designed for use in systems with a two-fold
communication network consisting of disjoint components
sharing a fast communication network all connected by a high
latency communication network. We defined safety properties
generally desired in consensus and prove that Layered Paxos
satisfies them. In addition, we defined liveness conditions
required for the algorithm to make progress. Finally, exper-
imental tests were run in AWS to simulate Layered Paxos in
these hierarchical systems. It was shown that Layered Paxos
can achieve up to 5x the throughput of Paxos. We also show
that Layered Paxos can tolerate delegate crashes using a Raft-
like leader election without an overly adverse effect on the
system. In the future, we plan to explore extending Layered
Paxos with optimized versions of Paxos, like Fast Paxos [10]
or other such variants, as a building block.

REFERENCES

[1] Lamport, Leslie. ”Paxos made simple.” ACM Sigact News 32, no. 4
(2001): 18-25.

[2] Lamport, Leslie. ”The part-time parliament.” In Concurrency: the Works
of Leslie Lamport, pp. 277-317. 2019.

[3] Liu, Fagui, and Yingyi Yang. ”D-Paxos: building hierarchical replicated
state machine for cloud environments.” IEICE TRANSACTIONS on
Information and Systems 99, no. 6 (2016): 1485-1501.

[4] Dwork, Cynthia, Nancy Lynch, and Larry Stockmeyer. ”Consensus in
the presence of partial synchrony.” Journal of the ACM (JACM) 35, no.
2 (1988): 288-323.

(a) Throughput vs. Time (b) Back-End Request Latency vs. Time

Fig. 10: Delegate crash experiment run with 2 components each with 6 processes. Delegate of one component is crashed at
47 seconds denoted by the red dashed line in each plot.



[5] Chandra, Tushar Deepak, and Sam Toueg. ”Unreliable failure detectors
for reliable distributed systems.” Journal of the ACM (JACM) 43, no. 2
(1996): 225-267.

[6] Castiglia, Timothy, Colin Goldberg, and Stacy Patterson. ”A Hierarchical
Model for Fast Distributed Consensus in Dynamic Networks.” arXiv
preprint arXiv:2004.06215 (2020).

[7] Ongaro, Diego, and John Ousterhout. ”In search of an understandable
consensus algorithm.” In 2014 USENIX Annual Technical Conference
(USENIXATC 14), pp. 305-319. 2014.

[8] Sanderson, David, and Jeremy Pitt. ”Institutionalised Paxos Consensus.”
In ECAI, pp. 714-719. 2012.

[9] Fischer, Michael J., Nancy A. Lynch, and Michael S. Paterson. ”Impos-
sibility of distributed consensus with one faulty process.” Journal of the
ACM (JACM) 32, no. 2 (1985): 374-382.

[10] Lamport, Leslie. ”Fast paxos.” Distributed Computing 19, no. 2 (2006):
79-103.


